Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2-amino-4-methylpyridinium) terephthalate tetrahydrate

Madhukar Hemamalini and Hoong-Kun Fun*‡

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 28 June 2010; accepted 30 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.101; data-to-parameter ratio = 9.4.

In the crystal structure of the title salt, $2C_6H_9N_2^{+}C_8H_4O_4^{2-}$. 4H₂O, the terephthalate carboxylate groups interacts with the 2-amino-4-methylpyridinium cations *via* a pair of N-H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif. The water molecules form an $R_6^6(12)$ ring motif through O-H···O hydrogen bonds and these motifs are fused, forming a supramolecular chain along the *c* axis. The $R_2^2(8)$ and $R_6^6(12)$ ring motifs are connected *via* O-H···O hydrogen bonds. In addition, π - π stacking interactions are observed between the pyridinium rings [centroid–centroid distance = 3.522 (12) Å].

Related literature

For details of non-covalent interactions, see: Desiraju (2007); Corna *et al.* (2004); Aakeröy & Seddon (1993). For background to the chemistry of substituted pyridines, see: Pozharski *et al.* (1997); Katritzky *et al.* (1996). For the applications of terephthalic acid, see: Serre *et al.* (2007); Mukherjee *et al.* (2004); Sun *et al.* (2000); Lynch & Jones (2004); Spencer *et al.* (2004); Devi & Muthiah (2007). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $2C_{6}H_{9}N_{2}^{+} \cdot C_{8}H_{4}O_{4}^{2-} \cdot 4H_{2}O$ $M_{r} = 454.48$ Monoclinic, *Cc* a = 17.6290 (16) Å b = 13.8091 (13) Å c = 9.2518 (9) Å $\beta = 93.940$ (2)°

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.955, T_{\rm max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$
$wR(F^2) = 0.101$
S = 1.06
3275 reflections
347 parameters
2 restraints
2 restrantes

Z = 4Mo K α radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 100 K $0.45 \times 0.27 \times 0.07 \text{ mm}$

V = 2246.9 (4) Å³

12651 measured reflections 3275 independent reflections 3004 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Table 1		_	
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1NA \cdots O2$	0.95 (3)	1.75 (3)	2.698 (2)	172 (3)
$N2A - H2NA \cdots O1$	0.83 (3)	2.10 (3)	2.906 (2)	165 (3)
$N2A - H3NA \cdots O1^{i}$	0.91 (3)	1.97 (3)	2.866 (2)	171 (2)
$N1B - H1NB \cdots O4^{ii}$	1.02 (5)	1.72 (5)	2.723 (2)	169 (3)
$N2B - H2NB \cdots O3^{ii}$	0.90 (4)	1.88 (4)	2.765 (2)	170 (3)
$N2B - H3NB \cdots O3W^{iii}$	0.93 (3)	1.97 (3)	2.894 (2)	174 (3)
$O1W - H1W1 \cdots O3W$	0.76 (4)	2.03 (3)	2.781 (2)	174 (4)
$O1W - H2W1 \cdots O4W$	0.89 (4)	1.91 (4)	2.779 (2)	167 (3)
$O2W - H1W2 \cdots O4^{iv}$	0.88 (3)	1.86 (3)	2.741 (2)	175 (3)
$O2W - H2W2 \cdots O4W$	0.88 (3)	1.90 (3)	2.772 (2)	176 (3)
$O3W - H1W3 \cdots O3^{v}$	0.77 (4)	1.95 (4)	2.721 (2)	178 (5)
$O3W - H2W3 \cdots O1W^{vi}$	0.86 (4)	1.89 (3)	2.742 (2)	168 (3)
$O4W - H1W4 \cdots O2$	0.92 (4)	1.81 (4)	2.689 (2)	161 (3)
$O4W - H2W4 \cdots O2W^{vi}$	0.80 (3)	1.93 (3)	2.716 (2)	171 (3)

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{3}{2}$; (iii) $x, -y, z - \frac{1}{2}$; (iv) x, y, z - 1; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) $x, -y, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5123).

‡ Thomson Reuters ResearcherID: A-3561-2009.

References

- Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Corna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). *Nature* (*London*), **431**, 287–290.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.
- Devi, P. & Muthiah, P. T. (2007). Acta Cryst. E63, 04822-04823.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.

- Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
- Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.
- Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. **126**, 2464–2473.
- Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). *Heterocycles in Life and Society*. New York: Wiley.
- Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
- Serre, C., Mellot-Draznieks, C., Surblé, S., Audebrand, N., Filinchuk, Y. & Férey, G. (2007). Science, 315, 1828–1831.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spencer, E. C., Baby Mariyatra, M., Howard, J. A. K. & Panchanatheswaran, K. (2004). Acta Cryst. C60, 0839–0842.
- Sun, D., Cao, R., Liang, Y., Hong, M., Su, W. & Weng, J. (2000). Acta Cryst. C56, e240–e241.

supplementary materials

Acta Cryst. (2010). E66, o1925-o1926 [doi:10.1107/S1600536810025651]

Bis(2-amino-4-methylpyridinium) terephthalate tetrahydrate

M. Hemamalini and H.-K. Fun

Comment

Supramolecular architectures assembled *via* various delicate noncovalent interactions such as hydrogen bonds, π – π stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna *et al.*, 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski *et al.*, 1997; Katritzky *et al.*, 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Terephthalic acid (H₂TPA), a rod-like aromatic diacid, has often been used in the synthesis of metal-organic frameworks as a linker molecule (Serre *et al.*, 2007; Mukherjee *et al.*, 2004; Sun *et al.*, 2000). Recently, with the increase in interest in controlling the crystalline structures of organic-based solid-state materials, H₂TPA is being increasingly employed in constructing supramolecular structures (Lynch & Jones, 2004; Spencer *et al.*, 2004; Devi & Muthiah, 2007). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title salt contains two 2-amino-4-methylpyridinium cations (A and B), one terephthalate anion and four water molecules (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.008 (2) Å for atom C2A (molecule A) and 0.005 (2) Å for atom C3B (molecule B). The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.10 (16)°] and C1B—N1B—C5B [122.09 (16)°] angles. The bond lengths (Allen *et al.*, 1987) and angles are normal.

In the crystal structure, the terephthalate carboxylate groups interacts with 2-amino-4-methylpyridinium cations *via* a pair of N—H···O hydrogen bonds, forming an $R_2^2(8)$ ring motif (Bernstein *et al.*, 1995). An $R_6^6(12)$ ring motif is formed by water molecules through O—H···O (Table 1) hydrogen bonds and these motifs fuse to form a one-dimensional supramolecular chain along the *c*-axis (Fig. 2). Further, the $R_2^2(8)$ and $R_6^6(12)$ motifs are connected *via* O—H···O hydrogen bonds (Fig. 3). The crystal structure is further stabilized by π - π interactions between N1A/C1A–C5A and N1B/C1B–C5B pyridinium rings at (x, y, z) [centroid-to-centroid distance = 3.522 (1) Å].

Experimental

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and terephthalic acid (83 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

O- and N-bound H atoms were located from a difference Fourier map and were refined freely [N–H= 0.83 (3)–1.01 (5) Å and O–H = 0.75 (3)–0.92 (3) Å]. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion, 2680 Friedel pairs were merged before the final refinement.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. View of the supramolecular chain made up of water molecules along the *c*-axis.

Fig. 3. Hydrogen bonding pattern in the title compound.

Bis(2-amino-4-methylpyridinium) terephthalate tetrahydrate

Crystal data

$2C_6H_9N_2^+ \cdot C_8H_4O_4^{2-} \cdot 4H_2O$	F(000) = 968
$M_r = 454.48$	$D_{\rm x} = 1.343 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 4430 reflections
a = 17.6290 (16) Å	$\theta = 2.3 - 30.0^{\circ}$
b = 13.8091 (13) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 9.2518 (9) Å	T = 100 K
$\beta = 93.940 \ (2)^{\circ}$	Plate, colourless
$V = 2246.9 (4) \text{ Å}^3$	$0.45\times0.27\times0.07~mm$
Z = 4	

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	3275 independent reflections
Radiation source: fine-focus sealed tube	3004 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
ϕ and ω scans	$\theta_{\text{max}} = 30.1^\circ, \ \theta_{\text{min}} = 1.9^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -21 \rightarrow 24$
$T_{\min} = 0.955, T_{\max} = 0.992$	$k = -19 \rightarrow 13$
12651 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.101$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0657P)^{2} + 0.2622P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3275 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
347 parameters	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1A	0.73749 (9)	0.27051 (12)	0.16796 (17)	0.0163 (3)
N2A	0.75478 (10)	0.43694 (12)	0.17137 (18)	0.0204 (3)
C1A	0.73275 (10)	0.35697 (14)	0.09938 (19)	0.0163 (4)

supplementary materials

C2A	0.70424 (11)	0.35868 (15)	-0.0481 (2)	0.0187 (4)
H2AA	0.7016	0.4170	-0.0983	0.022*
C3A	0.68056 (10)	0.27471 (14)	-0.11685 (19)	0.0173 (4)
C4A	0.68604 (11)	0.18620 (14)	-0.0396 (2)	0.0188 (4)
H4AA	0.6702	0.1286	-0.0841	0.023*
C5A	0.71489 (11)	0.18657 (15)	0.1009 (2)	0.0202 (4)
H5AA	0.7192	0.1285	0.1518	0.024*
C6A	0.64919 (12)	0.27652 (16)	-0.2720 (2)	0.0230 (4)
H6AA	0.6584	0.3389	-0.3133	0.034*
H6AB	0.5954	0.2645	-0.2762	0.034*
H6AC	0.6736	0.2274	-0.3257	0.034*
N1B	0.48583 (10)	0.31843 (13)	-0.04463 (18)	0.0195 (3)
N2B	0.49724 (10)	0.15247 (12)	-0.02353 (17)	0.0184 (3)
C1B	0.50869 (11)	0.23962 (14)	0.03428 (19)	0.0169 (4)
C2B	0.54266 (11)	0.25447 (16)	0.1759 (2)	0.0183 (4)
H2BA	0.5582	0.2015	0.2326	0.022*
C3B	0.55264 (11)	0.34599 (15)	0.2296 (2)	0.0200 (4)
C4B	0.52752 (12)	0.42658 (16)	0.1435 (2)	0.0230 (4)
H4BA	0.5336	0.4894	0.1788	0.028*
C5B	0.49433 (12)	0.41005 (15)	0.0082 (2)	0.0220 (4)
H5BA	0.4773	0.4622	-0.0487	0.026*
C6B	0.58818 (13)	0.36063 (18)	0.3806 (2)	0.0271 (5)
H6BA	0.6173	0.3043	0.4099	0.041*
H6BB	0.5490	0.3707	0.4461	0.041*
H6BC	0.6210	0.4162	0.3822	0.041*
01	0.79418 (8)	0.41120 (10)	0.47912 (14)	0.0196 (3)
02	0.80222 (9)	0.25260 (10)	0.43950 (15)	0.0196 (3)
03	0.95157 (10)	0.35431 (12)	1.18466 (16)	0.0258 (3)
O4	0.93553 (9)	0.19471 (11)	1.17111 (15)	0.0227 (3)
C7	0.87740 (10)	0.39144 (13)	0.75006 (19)	0.0156 (3)
H7A	0.8791	0.4520	0.7063	0.019*
C8	0.90527 (10)	0.37998 (14)	0.89289 (19)	0.0158 (3)
H8A	0.9248	0.4331	0.9447	0.019*
С9	0.90425 (10)	0.28948 (14)	0.95947 (18)	0.0148 (3)
C10	0.87640 (10)	0.20985 (14)	0.87956 (19)	0.0153 (3)
H10A	0.8771	0.1488	0.9219	0.018*
C11	0.84752 (11)	0.22144 (13)	0.73637 (19)	0.0156 (3)
H11A	0.8286	0.1681	0.6840	0.019*
C12	0.84683 (10)	0.31250 (13)	0.67150 (18)	0.0138 (3)
C13	0.81214 (10)	0.32704 (14)	0.51865 (18)	0.0147 (3)
C14	0.93282 (10)	0.27846 (14)	1.11620 (19)	0.0165 (4)
O1W	0.63068 (10)	0.06139 (12)	0.38459 (17)	0.0271 (3)
O2W	0.85423 (10)	0.02585 (12)	0.18024 (18)	0.0268 (3)
O3W	0.56061 (10)	0.01269 (12)	0.63491 (16)	0.0242 (3)
O4W	0.78771 (9)	0.05874 (11)	0.43863 (16)	0.0224 (3)
H1NA	0.7560 (17)	0.265 (2)	0.267 (3)	0.024 (7)*
H2NA	0.7743 (15)	0.432 (2)	0.255 (3)	0.022 (6)*
H3NA	0.7636 (14)	0.489 (2)	0.115 (3)	0.019 (6)*
H1NB	0.463 (3)	0.307 (3)	-0.147 (5)	0.077 (14)*
				. ,

H2NB	0.4765 (19)	0.150 (2)	-0.115 (4)	0.038 (8)*
H3NB	0.5148 (17)	0.100 (2)	0.032 (3)	0.033 (8)*
H1W1	0.6143 (17)	0.050(2)	0.456 (4)	0.025 (7)*
H2W1	0.680 (2)	0.051 (2)	0.404 (4)	0.040 (9)*
H1W2	0.8800 (16)	0.080 (2)	0.172 (3)	0.025 (7)*
H2W2	0.8348 (16)	0.035 (2)	0.264 (3)	0.025 (7)*
H1W3	0.529 (2)	0.049 (3)	0.649 (4)	0.059 (12)*
H2W3	0.5807 (17)	-0.003 (2)	0.719 (4)	0.034 (8)*
H1W4	0.7949 (18)	0.123 (3)	0.461 (3)	0.035 (8)*
H2W4	0.8036 (18)	0.029 (2)	0.508 (4)	0.031 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0186 (7)	0.0172 (7)	0.0128 (7)	-0.0016 (6)	-0.0011 (6)	0.0010 (5)
N2A	0.0271 (8)	0.0185 (7)	0.0147 (7)	-0.0044 (6)	-0.0042 (6)	0.0014 (6)
C1A	0.0166 (8)	0.0170 (8)	0.0151 (8)	-0.0016 (7)	-0.0005 (6)	0.0016 (6)
C2A	0.0203 (9)	0.0220 (9)	0.0136 (7)	-0.0013 (7)	-0.0008 (6)	0.0026 (6)
C3A	0.0146 (8)	0.0234 (9)	0.0140 (8)	0.0014 (7)	0.0007 (6)	0.0006 (7)
C4A	0.0200 (9)	0.0182 (8)	0.0182 (8)	-0.0020 (7)	0.0015 (7)	-0.0031 (7)
C5A	0.0209 (9)	0.0184 (9)	0.0215 (9)	0.0021 (7)	0.0024 (7)	0.0027 (7)
C6A	0.0234 (10)	0.0321 (11)	0.0125 (8)	-0.0007 (8)	-0.0051 (7)	-0.0014 (7)
N1B	0.0219 (8)	0.0207 (8)	0.0153 (7)	-0.0009 (6)	-0.0021 (6)	0.0001 (6)
N2B	0.0225 (8)	0.0195 (8)	0.0127 (7)	-0.0017 (6)	-0.0024 (6)	-0.0006 (6)
C1B	0.0162 (8)	0.0211 (9)	0.0135 (8)	-0.0020 (6)	0.0013 (6)	0.0009 (6)
C2B	0.0172 (8)	0.0240 (9)	0.0137 (8)	-0.0006 (7)	0.0002 (6)	0.0005 (6)
C3B	0.0174 (9)	0.0295 (10)	0.0133 (8)	-0.0029 (7)	0.0020 (6)	-0.0019 (7)
C4B	0.0250 (10)	0.0221 (9)	0.0217 (9)	-0.0004 (8)	-0.0004 (7)	-0.0039(7)
C5B	0.0232 (9)	0.0227 (9)	0.0198 (9)	0.0027 (7)	-0.0003 (7)	-0.0001 (7)
C6B	0.0282 (11)	0.0370 (12)	0.0151 (9)	0.0003 (9)	-0.0048 (8)	-0.0064 (8)
01	0.0276 (7)	0.0164 (6)	0.0140 (6)	0.0043 (5)	-0.0034 (5)	0.0006 (5)
02	0.0293 (7)	0.0149 (6)	0.0138 (6)	0.0008 (5)	-0.0032 (5)	-0.0006 (5)
03	0.0373 (8)	0.0238 (7)	0.0151 (6)	-0.0085 (6)	-0.0064 (6)	0.0005 (5)
O4	0.0309 (8)	0.0196 (7)	0.0165 (6)	-0.0048 (6)	-0.0053 (5)	0.0033 (5)
C7	0.0165 (8)	0.0154 (8)	0.0146 (8)	0.0003 (6)	-0.0007 (6)	0.0007 (6)
C8	0.0160 (8)	0.0173 (8)	0.0138 (7)	-0.0027 (6)	-0.0014 (6)	-0.0012 (6)
C9	0.0143 (8)	0.0198 (8)	0.0103 (7)	0.0005 (6)	-0.0001 (6)	0.0015 (6)
C10	0.0183 (8)	0.0152 (8)	0.0124 (8)	0.0010 (7)	0.0002 (6)	0.0017 (6)
C11	0.0180 (8)	0.0161 (8)	0.0126 (8)	0.0004 (7)	-0.0006 (6)	-0.0006 (6)
C12	0.0136 (8)	0.0166 (8)	0.0112 (7)	0.0015 (6)	0.0010 (6)	0.0009 (6)
C13	0.0163 (8)	0.0177 (8)	0.0099 (7)	-0.0002 (6)	-0.0003 (6)	0.0006 (6)
C14	0.0177 (8)	0.0203 (9)	0.0109 (7)	-0.0035 (7)	-0.0028 (6)	0.0009 (6)
O1W	0.0280 (8)	0.0343 (9)	0.0189 (7)	-0.0029 (7)	-0.0002 (6)	0.0039 (6)
O2W	0.0357 (9)	0.0214 (7)	0.0236 (7)	-0.0049 (6)	0.0044 (6)	-0.0045 (6)
O3W	0.0289 (8)	0.0237 (7)	0.0197 (7)	0.0027 (6)	0.0002 (6)	-0.0012 (5)
O4W	0.0306 (8)	0.0169 (7)	0.0194 (7)	-0.0007 (6)	-0.0007 (6)	0.0001 (5)

Geometric parameters (Å, °)

N1A—C1A	1.352 (2)	C4B—H4BA	0.93
N1A—C5A	1.361 (3)	C5B—H5BA	0.93
N1A—H1NA	0.95 (3)	C6B—H6BA	0.96
N2A—C1A	1.334 (2)	C6B—H6BB	0.96
N2A—H2NA	0.83 (3)	C6B—H6BC	0.96
N2A—H3NA	0.91 (3)	O1—C13	1.253 (2)
C1A—C2A	1.421 (2)	O2—C13	1.267 (2)
C2A—C3A	1.374 (3)	O3—C14	1.256 (2)
C2A—H2AA	0.93	O4—C14	1.263 (2)
C3A—C4A	1.416 (3)	C7—C8	1.387 (2)
C3A—C6A	1.503 (2)	C7—C12	1.398 (2)
C4A—C5A	1.363 (3)	C7—H7A	0.93
C4A—H4AA	0.93	C8—C9	1.394 (3)
С5А—Н5АА	0.93	C8—H8A	0.93
C6A—H6AA	0.96	C9—C10	1.395 (2)
С6А—Н6АВ	0.96	C9—C14	1.510(2)
С6А—Н6АС	0.96	C10—C11	1.395 (2)
N1B—C1B	1.356 (2)	C10—H10A	0.93
N1B—C5B	1.361 (3)	C11—C12	1.393 (2)
N1B—H1NB	1.01 (5)	C11—H11A	0.93
N2B—C1B	1.327 (3)	C12—C13	1.515 (2)
N2B—H2NB	0.90 (3)	O1W—H1W1	0.75 (3)
N2B—H3NB	0.93 (3)	O1W—H2W1	0.89 (3)
C1B—C2B	1.418 (2)	O2W—H1W2	0.88 (3)
C2B—C3B	1.365 (3)	O2W—H2W2	0.88 (3)
C2B—H2BA	0.93	O3W—H1W3	0.76 (5)
C3B—C4B	1.421 (3)	O3W—H2W3	0.86 (3)
C3B—C6B	1.505 (3)	O4W—H1W4	0.92 (3)
C4B—C5B	1.364 (3)	O4W—H2W4	0.79 (3)
C1A—N1A—C5A	122.10 (16)	C4B—C3B—C6B	120.57 (19)
C1A—N1A—H1NA	121.5 (17)	C5B—C4B—C3B	118.71 (19)
C5A—N1A—H1NA	116.4 (17)	C5B—C4B—H4BA	120.6
C1A—N2A—H2NA	118.8 (19)	C3B—C4B—H4BA	120.6
C1A—N2A—H3NA	115.1 (16)	N1B—C5B—C4B	121.01 (18)
H2NA—N2A—H3NA	122 (2)	N1B—C5B—H5BA	119.5
N2A—C1A—N1A	119.37 (16)	C4B—C5B—H5BA	119.5
N2A—C1A—C2A	122.50 (17)	C3B—C6B—H6BA	109.5
N1A—C1A—C2A	118.13 (16)	C3B—C6B—H6BB	109.5
C3A—C2A—C1A	120.45 (18)	Н6ВА—С6В—Н6ВВ	109.5
C3A—C2A—H2AA	119.8	C3B—C6B—H6BC	109.5
С1А—С2А—Н2АА	119.8	H6BA—C6B—H6BC	109.5
C2A—C3A—C4A	119.13 (16)	H6BB—C6B—H6BC	109.5
C2A—C3A—C6A	120.58 (18)	C8—C7—C12	120.35 (17)
C4A—C3A—C6A	120.29 (18)	С8—С7—Н7А	119.8
C5A—C4A—C3A	119.09 (17)	С12—С7—Н7А	119.8
С5А—С4А—Н4АА	120.5	C7—C8—C9	120.59 (16)

СЗА—С4А—Н4АА	120.5	С7—С8—Н8А	119.7
N1A—C5A—C4A	121.08 (18)	С9—С8—Н8А	119.7
N1A—C5A—H5AA	119.5	C8—C9—C10	119.16 (15)
С4А—С5А—Н5АА	119.5	C8—C9—C14	120.08 (15)
СЗА—С6А—Н6АА	109.5	C10—C9—C14	120.77 (16)
СЗА—С6А—Н6АВ	109.5	C11—C10—C9	120.31 (16)
Н6АА—С6А—Н6АВ	109.5	C11—C10—H10A	119.8
СЗА—С6А—Н6АС	109.5	C9—C10—H10A	119.8
Н6АА—С6А—Н6АС	109.5	C12—C11—C10	120.29 (16)
Н6АВ—С6А—Н6АС	109.5	C12—C11—H11A	119.9
C1B—N1B—C5B	122.09 (16)	C10—C11—H11A	119.9
C1B—N1B—H1NB	118 (3)	C11—C12—C7	119.24 (15)
C5B—N1B—H1NB	120 (3)	C11—C12—C13	120.85 (15)
C1B—N2B—H2NB	117 (2)	C7—C12—C13	119.90 (16)
C1B—N2B—H3NB	116.5 (19)	O1—C13—O2	124.18 (16)
H2NB—N2B—H3NB	126 (3)	O1—C13—C12	118.25 (16)
N2B—C1B—N1B	118.66 (16)	O2—C13—C12	117.57 (16)
N2B—C1B—C2B	123.14 (18)	O3—C14—O4	124.01 (16)
N1B—C1B—C2B	118.19 (18)	O3—C14—C9	117.32 (16)
C3B—C2B—C1B	120.39 (19)	O4—C14—C9	118.66 (16)
C3B—C2B—H2BA	119.8	H1W1—O1W—H2W1	103 (3)
C1B—C2B—H2BA	119.8	H1W2—O2W—H2W2	101 (3)
C2B—C3B—C4B	119.60 (17)	H1W3—O3W—H2W3	106 (4)
C2B—C3B—C6B	119.81 (19)	H1W4—O4W—H2W4	106 (3)
C5A—N1A—C1A—N2A	179.05 (18)	C3B—C4B—C5B—N1B	-0.6 (3)
C5A—N1A—C1A—C2A	-1.0 (3)	C12—C7—C8—C9	0.9 (3)
N2A—C1A—C2A—C3A	-178.48 (19)	C7—C8—C9—C10	1.5 (3)
N1A—C1A—C2A—C3A	1.6 (3)	C7—C8—C9—C14	-178.37 (18)
C1A—C2A—C3A—C4A	-1.0 (3)	C8—C9—C10—C11	-2.2 (3)
C1A—C2A—C3A—C6A	178.99 (18)	C14—C9—C10—C11	177.62 (17)
C2A—C3A—C4A—C5A	-0.2 (3)	C9—C10—C11—C12	0.5 (3)
C6A—C3A—C4A—C5A	179.84 (18)	C10-C11-C12-C7	1.9 (3)
C1A—N1A—C5A—C4A	-0.2 (3)	C10-C11-C12-C13	-176.98 (17)
C3A—C4A—C5A—N1A	0.8 (3)	C8—C7—C12—C11	-2.6 (3)
C5B—N1B—C1B—N2B	178.77 (19)	C8—C7—C12—C13	176.24 (17)
C5B—N1B—C1B—C2B	-0.2 (3)	C11—C12—C13—O1	161.04 (18)
N2B—C1B—C2B—C3B	-179.74 (19)	C7—C12—C13—O1	-17.8 (3)
N1B—C1B—C2B—C3B	-0.8 (3)	C11—C12—C13—O2	-18.0 (3)
C1B—C2B—C3B—C4B	1.1 (3)	C7—C12—C13—O2	163.16 (17)
C1B—C2B—C3B—C6B	179.48 (19)	C8—C9—C14—O3	5.2 (3)
C2B—C3B—C4B—C5B	-0.4 (3)	C10—C9—C14—O3	-174.63 (18)
C6B—C3B—C4B—C5B	-178.8 (2)	C8—C9—C14—O4	-175.75 (19)
C1B—N1B—C5B—C4B	0.9 (3)	C10—C9—C14—O4	4.4 (3)
Hydrogen-bond geometry (\mathring{A} °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1A—H1NA···O2	0.95 (3)	1.75 (3)	2.698 (2)	172 (3)
N2A—H2NA…O1	0.83 (3)	2.10 (3)	2.906 (2)	165 (3)

supplementary materials

N2A—H3NA···O1 ⁱ	0.91 (3)	1.97 (3)	2.866 (2)	171 (2)		
N1B—H1NB…O4 ⁱⁱ	1.02 (5)	1.72 (5)	2.723 (2)	169 (3)		
N2B—H2NB···O3 ⁱⁱ	0.90 (4)	1.88 (4)	2.765 (2)	170 (3)		
N2B—H3NB····O3W ⁱⁱⁱ	0.93 (3)	1.97 (3)	2.894 (2)	174 (3)		
O1W—H1W1···O3W	0.76 (4)	2.03 (3)	2.781 (2)	174 (4)		
O1W—H2W1···O4W	0.89 (4)	1.91 (4)	2.779 (2)	167 (3)		
O2W—H1W2····O4 ^{iv}	0.88 (3)	1.86 (3)	2.741 (2)	175 (3)		
O2W—H2W2···O4W	0.88 (3)	1.90 (3)	2.772 (2)	176 (3)		
O3W—H1W3···O3 ^v	0.77 (4)	1.95 (4)	2.721 (2)	178 (5)		
O3W—H2W3···O1W ^{vi}	0.86 (4)	1.89 (3)	2.742 (2)	168 (3)		
O4W—H1W4…O2	0.92 (4)	1.81 (4)	2.689 (2)	161 (3)		
O4W—H2W4···O2W ^{vi}	0.80 (3)	1.93 (3)	2.716 (2)	171 (3)		
Symmetry codes: (i) <i>x</i> , - <i>y</i> +1, <i>z</i> -1/2; (ii) <i>x</i> -1/2, - <i>y</i> +1/2, <i>z</i> -3/2; (iii) <i>x</i> , - <i>y</i> , <i>z</i> -1/2; (iv) <i>x</i> , <i>y</i> , <i>z</i> -1; (v) <i>x</i> -1/2, - <i>y</i> +1/2, <i>z</i> -1/2; (vi) <i>x</i> , - <i>y</i> , <i>z</i> +1/2.						

Fig. 1

Fig. 3